Diversification of the Histone Fold Motif in Plants: Evolution of New Functional Roles
نویسندگان
چکیده
The Histone fold motif (HFM) is one of the most conserved structural motifs in biology, mainly found in the core histone sub-units of all eukaryotes. The HFM represents a helix-strand-helix motif having three alpha helices connected by two loops/beta strands. This helix-strand-helix motif has the unique property of binding strongly with proteins as well as with DNA. Apart from core histones, the HFM has been reported in a variety of other proteins in all forms of life. In this work, the various classes of proteins that contain the HFM, as well as the diverse roles played by these proteins in the plant kingdom are reviewed. As will be clear from this review, formation of the core histones through multi-merisation is not the only role played by this conserved fold, although the characteristic ability of the HFM to dimerise with suitable partner proteins has been used by nature to perform several non-core-histone functions. Most of the information about plant HFM containing proteins, such as identification and classification, has been done based on homology with yeast and animal counterparts. However, the ability of plants genomes to duplicate extensively has led to the existence of large gene families of the HFM containing proteins, unlike other eukaryotes. Plant HFM containing proteins can broadly be classified under the following major categories; TBP-associated factors (TAF), Nuclear Factor Y (NF-Y), Dr1/DrAp1 proteins and the chromatin accessibility complex (CHRAC). These proteins families are known to be involved in transcriptional regulation, co-activation and chromosome maintenance. Partner recognition through dimer formation remains a major conserved feature of these groups when compared with core histone sub-units.
منابع مشابه
The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization.
The histones of all eukaryotes show only a low degree of primary structure homology, but our earlier crystallographic results defined a three-dimensional structural motif, the histone fold, common to all core histones. We now examine the specific architectural patterns within the fold and analyze the nature of the amino acid residues within its functional segments. The histone fold emerges as a...
متن کاملAnalysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes.
Sequence similarity and profile searching tools were used to analyze the genome sequences of Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans and Drosophila melanogaster for genes encoding three families of histone deacetylase (HDAC) proteins and three families of histone acetyltransferase (HAT) proteins. Plants, animals and fungi were found to h...
متن کاملGenome-Wide Analyses of a Plant-Specific LIM-Domain Gene Family Implicate Its Evolutionary Role in Plant Diversification
The Arabidopsis DA1 genes appear to have multiple functions in regulating organ size and abiotic stress response, but the biological roles of its closely related genes remain unknown. Evolutionary analyses might provide some clues to aid in an understanding of their functional diversification. In this work, we characterized the molecular evolution and expressional diversification of DA1-like ge...
متن کاملHDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کاملEvolutionary Origin, Gradual Accumulation and Functional Divergence of Heat Shock Factor Gene Family with Plant Evolution
Plants, as sessile organisms, evolved a complex and functionally diverse heat shock factor (HSF) gene family to cope with various environmental stresses. However, the limited evolution studies of the HSF gene family have hindered our understanding of environmental adaptations in plants. In this study, a comprehensive evolution analysis on the HSF gene family was performed in 51 representative p...
متن کامل